Delivering Machine Learning Value: A Guide For Humans

Discord Distinguished Speaker Series 3/31/22 Mihail Eric

Who am I

- Researcher -> Engineer -> Research Engineer
- Helped start a special projects group at Alexa AI focused on forward-thinking efforts for the platform
 - Built some of first large-scale NLP models
 - Transformers trained on ~1TB of conversational data
 - Built and integrated state-of-the-art models across language understanding, information retrieval, and generation
- Run a <u>consultancy</u> helping organizations build ML systems often in 0-1 phase
- Run Confetti AI a platform for educating data practitioners

How to Quickly Lose Friends

MLOps Is a Mess But That's to be Expected

March 2022

A Brief Recap

- Machine learning has been on a tear
 - Record funding
 - $\circ \quad \text{New tools} \quad$
 - New companies
- Everything is perfect, right...right?

A Brief Recap

- Spoke to 20+ ML practitioners
 - What do you think about the state of things?
 - What are your thoughts on different parts of the stack?
 - Where are we going?
- The tooling landscape is fragmented and confused
 - New terms for similar things
 - No real canonical stack
 - Conventions and best practices are largely in flux
- Most companies aren't ready for the latest and greatest ML
- Tooling will get better but we also need organizational maturation

Hacker News Reception

▲ discordance 27 days ago | prev | next [-]

It's not that big of a deal.

1. Collect new data

2. Clean data

3. Annotate

4. Train models and store versions

5. Analyze errors/model metrics (and re-train as need be)

6. Deploy model/s

7. Monitor

8. Repeat steps 1 - 7

Yes, there are many tools that can help with each the above. Use whatever suits to automate it and make your job easier.

It sort of is a big deal

What Should You Be Doing as an Organization

- Well... it depends
- Different companies need (and should expect) different things from ML

Focus on business context

Case Study 1: ML Newcomers

• The Organization

- Most companies in the early stages really just need their first wins
- Small team of ~1-2 data scientists
- Get executive buy-in for machine learning efforts
- Emphasize POC projects with clear path to ROI
- The Tech
 - Use some off-the-shelf end-to-end platform (Sagemaker, Datarobot, etc)
 - Some components like a monitoring solution may not be immediate priority
 - If appropriate start with no ML!
- Education
 - Set reasonable expectations for what ML can do
 - Bring business stakeholders to the table (provide transparency in understandable terms)

Case Study 1: ML Newcomers

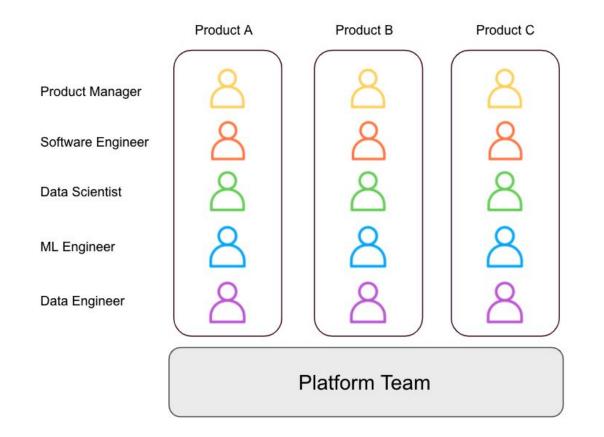
- Pitfalls
 - Oftentimes resource constrained (people, compute, data)
 - Need strong alignment with business function
 - Time to value is crucial
 - Avoid ML disillusionment

Case Study 2: ML Natives

- Companies that recognize ML is core to what they do
- The Organization
 - Already have buy-in for projects
 - More deliberate about defining scalable operational processes
- The Tech
 - Heterogeneous stack with your best-in-breed sample of the tooling buffet

Organizational Blueprint

- Tight collaboration and cross-functional teams
 - No silos please!
 - Minimize communication latency, maximize context
- Enable fast iteration of problem and solution
 - Agile principles at all parts of ML pipeline
 - Emphasize easy developer experience/onboarding for data practitioners
- Recognize that ML systems are living entities that balance experimentation **and** engineering
 - Experimentation is about doing the ML
 - Engineering is about delivering the ML



"The Stack"



Important Considerations

- Automation and configs galore
- Ensure there is robust data management and infrastructure
 - Remember the <u>AI hierarchy of needs</u>
- Effectively abstract away resource concerns for experimental work
- Need well-defined triggers for different pipeline processes
- Programmatic documentation
 - The tests are the documentation!

Some Unsolved Problems

- Monitoring
 - What to measure and how to visualize
 - Rolling windows for metrics are tricky to get right
- Serving
 - How to support resource requirements of new model types (foundation models, etc.)
- Productionizing
 - Often still takes too long for machine learning models to go live
 - Undermines ML ROI
 - Tools such as <u>Metaflow</u> are steps forward

Further Reading

- <u>MLOPs Community</u>
- <u>https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43146.pd</u>
 <u>f</u>
- https://github.com/eugeneyan/applied-ml
- <u>https://cloud.google.com/architecture/mlops-continuous-delivery-and-automati</u> <u>on-pipelines-in-machine-learning</u>
- <u>https://fullstackdeeplearning.com/spring2021/lecture-13/</u>
- <u>https://www.shreya-shankar.com/rethinking-ml-monitoring-1/</u>
- <u>https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007</u>

Thanks for Listening!

@mihail_eric